

COMPDYN 2017 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering 15-17 June 2017 – Rhodes Island, Greece

A new numerical procedure for assessing the dynamic behaviour of ancient masonry towers

D. Pellegrini¹, M. Girardi¹, C. Padovani¹ and R.M. Azzara²

¹ Institute of Information Science and Technologies, Italian National Research Council, Pisa, Italy
 ² Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Sismologico di Arezzo, Italy

Summary :

- 1. The NOSA-ITACA software
- 2. The case study: The "Clock Tower" in Lucca
- 3. The finite element model of the tower
- 4. Model Updating
- 5. Conclusion

1. The NOSA-ITACA software (last release-version 1.1)

- NOSA-ITACA is a freeware software package <u>developed by ISTI-CNR</u>. It is a finite element code that combines NOSA with the open source graphic platform SALOME. It is used to study the static and dynamic behavior of masonry constructions.
- **Masonry** is described as a nonlinear elastic material with zero tensile strength and infinite or bounded compressive strength.

2. The case study: The "Clock Tower" in Lucca

Characteristics of the tower

- Height 48.4m;
- Rectangular cross section of about 5.1x7.1m;
- Walls of variable thickness from about 1.77 m at the base to 0.85 m at the top;
- Two barrel vaults set at heights of about 12.5 and 42.3 m, respectively;
- Adjacent buildings on two sides for a height of about 13 m (asymmetric boundary condition);
- Masonry of stone blocks and thin mortar joints and/or regular stone blocks and bricks, also with thin joints (no experimental information is available to date).

2. The case study: The "Clock Tower" in Lucca

Dynamic behaviour of the tower: experimental campaign

Strumentation employed: SARA Seismic Station; sampling frequency 100Hz.

	Frequency [Hz]	Mode	MPC
Mode 1	1.05	X direction	0.98
Mode 2	1.30	Y direction	0.97
Mode 3	4.20	torsional	0.96
Mode 4	4.50	torsional	0.92

First four mode shapes and the relative frequencies obtained by EFDD method.

Sensors setup

3. The finite element model of the tower

NOSA–ITACA code is used, together with model updating techniques, in order to fit the experimental results in the linear elastic and the nonlinear (masonry–like) case.

Finite element model charateristics:

- 11383 brick elements;
- 34149 degrees of freedom;
- steel tie rods and wooden elements of the roof discretized by beam elements;
- Wood: Young's modulus E = 10000MPa; density $\rho = 800$ kg/m3;
- structure clamped at the base and additional boundary conditions.

Hypothesis: bell tower made of a homogeneous isotropic masonry-like material with Poisson's ratio v = 0.2, Young's modulus *E* and mass density ρ .

Model updating conducted by varying *E* and ρ in the following intervals:

2500 MPa $\leq E \leq$ 5500 MPa 1700 kg/m³ $\leq \rho \leq$ 2100 kg/m³

Minimization of the functions:

 $e^{l}(E, \rho) = \sum_{i=1}^{4} (f^{l}_{i}(E, \rho) - f^{exp}_{i})^{2} \quad \text{linear case}$ $e(E, \rho) = \sum_{i=1}^{4} (f_{i}(E, \rho) - f^{exp}_{i})^{2} \quad \text{nonlinear case}$

	ø 1	\$\$ 2	ø 3	ø 4
ϕ_{1}^{l}	0.998	0.039	0.019	0.020
\$	0.038	0.997	0.008	0.011
\$	0.003	0.008	0.810	0.580
\$	0.024	0.000	0.580	0.800

Table of MAC- $M(\phi_i^l, \phi_j)$

	$f_{ m i}^{ m exp}$ [Hz]	$f^{l}_{ m i}$ [Hz]	$ f_{\mathrm{i}}^{\mathrm{exp}} f_{\mathrm{i}}^{l} /f_{\mathrm{i}}^{\mathrm{exp}}$ [%]	$f_{ m i}$ [Hz]	$ f_i^{exp}-f_i /f_i^{exp}$ [%]
Mode shape 1	1.05	0.98	7.0	1.08	3.0
Mode shape 2	1.30	1.24	5.0	1.28	2.0
Mode shape 3	4.20	4.32	3.0	4.24	1.0
Mode shape 4	4.50	4.38	3.0	4.52	0.4

Frequencies: f_i^{exp} experimental, f_i^l linear case, f_i nonlinear case

Maximum principal fracture strain $E = 4500 \text{ MPa}; \rho = 2100 \text{ kg/m}^3$

Comparison between experimental results and numerical results (nonlinear masonry-like)

Comparison between experimental results and numerical results (nonlinear masonry-like)

$$f_2^{exp} = 4.50 \text{ Hz}$$

 $f_2 = 4.52 \text{ Hz}$
MAC = 0.52

15-17 June 2017 - Rhodes Island, Greece

5. Conclusion

- A new numerical procedure, implemented in the finite element code NOSA–ITACA, for the modal analysis of masonry structures is proposed.
- The procedure allows the user to automatically take into account the influence of the stress distribution on the system's stiffness matrix, thereby evaluating the effects of the presence of cracked material on the structure's dynamic properties.
- The method proposed has been applied to the "Clock Tower" in Lucca.
- The model updating in the linear elastic case has been compared to that in the nonlinear case, applied to the tower subjected to its own weight while taking into account the crack distribution induced by the load.

Thank you for your kind attention

i Istituto Nazionale di Geofisica e Vulcanologia

Acknowledgements

This research has been supported by the Region of Tuscany (PAR-FAS 2007-2013) and by MIUR, the Italian Ministry of Education, Universities and Research (FAR) within the Call FAR-FAS 2014 (**MOSCARDO Project:** "ICT technologies for structural monitoring of age old constructions based on wireless sensor networks and drones", 2016-2018). This support is gratefully acknowledged.

D. Pellegrini¹, M. Girardi¹, C. Padovani¹ and R.M. Azzara²

¹ Institute of Information Science and Technologies, Italian National Research Council, Pisa, Italy ² Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Sismologico di Arezzo, Italy

15-17 June 2017 - Rhodes Island, Greece